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We have studied the collective calcium signaling behavior of an array of coupled N cells, taking into account
the internal noises resulting from the small cell size V. The system’s performance was characterized by the
reciprocal coefficient of variance (RCV) of the calcium spike train. Two system-size resonances were observed,
namely, the RCV value shows a clear peak when both N and V are optimal. Therefore, an optimal number of

cells of optimal size work the best as a whole.
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The study of noise-induced constructive effects in nonlin-
ear dynamical systems has drawn great research interest in
the last two decades. It was demonstrated that there exists a
“resonant” noise intensity at which the response of the sys-
tem to a periodic force is maximally ordered, which is well
known as stochastic resonance (SR) [1], or the order of the
noise-driven system itself can have a maximum in the ab-
sence of periodic forcing, which is called coherent resonance
(CR) [2,3]. Very recently, the frontier of this interest has
shifted to a new and quite interesting SR-like phenomenon,
system-size resonance [4—13]. So far, mainly two types of
“size-resonance” behavior have been reported. On one hand,
it was demonstrated that the collective behavior of an array
of coupled N noisy dynamical elements may be the most
ordered when the system size (here it is the number of ele-
ments N) has an optimal value [4-6]. In such a case, the
noise is ad hoc external and the system size N plays a role in
changing the effective noise strength subjected to the mean
field. For example, system-size stochastic resonance was
found in an ensemble of coupled noisy bistable elements
subjected to a small periodic force [4], and system-size co-
herent resonance was demonstrated in a one-dimensional lat-
tice of diffusively coupled excitable neurons in the absence
of an external signal [5]. On the other hand, for chemical
oscillating reactions taking place in small systems, stochastic
oscillations can be observed and there is an optimal system
size at which such stochastic oscillations show the best per-
formance [7-13]. In such small systems, the molecule num-
bers of the reactants are often low and the internal noise
resulting from the stochastic reaction events must be consid-
ered (it is generally accepted that the strength of the internal
noise scales as 1/\V, where V is proportional to the system
size). There have been a few quite interesting findings of this
type. It was reported that ion-channel clusters of optimal
sizes can enhance the encoding of a sub threshold stimulus
[7,8], and optimal intracellular calcium signaling appears at a
certain size or distribution of the ion-channel clusters [9-11].
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In recent studies, using the Brusselator and a circadian clock
model, we have shown that the internal noise can induce
stochastic oscillations in a regime close to the deterministic
oscillatory dynamics, and an optimal system size exists
for such stochastic oscillations, characterized by a clear
maximum in the effective signal-to-noise ratio (SNR) as a
function of system size V [12]. To outline, a chain of
N-coupled noisy dynamic elements may show system-size N
resonance, and a mesoscopic chemical oscillator of size V
can show system-size V resonance. Note that the first one
only accounts for external noise so far, and the second one
results from the internal noise in small chemical-reaction
systems.

In the present paper, we report an interesting phenom-
enon, namely, two system-size resonances for coupled
mesoscopic chemical oscillators. Such a phenomenon
demonstrates the coexistence of both N resonance and V
resonance in a system. We have studied the collective
dynamics of an array of N-coupled hypatocyte cells, each
of size V, by using chemical Langevin equations (CLE).
Internal noise is expected to induce calcium spikes, of which
the regularity is evaluated by the reciprocal coefficient
of variance (RCV), defined as the mean value of the spike
interval 7 normalized to its standard deviation, namely,
R=1/\(7)—(7)*. Two size resonances are found, i.e., R
can reach a maximum at an optimal cell size V when the
network size N is fixed, and it also shows a maximum for
an optimal N if V is fixed. In short, an optimal number of
cells of optimal size function the best for their collective
dynamics.

Calcium often acts as a second messenger in living cells
so as to regulate multiple cellular functions, and there is a
vast literature devoted to the mathematical modeling of in-
tracellular and intercellular calcium oscillations and waves
observed in the experiments [14]. The model to be consid-
ered below was proposed to describe the intercellular cal-
cium oscillations in hypatocytes [15,16]. According to this
simplified model, the calcium signaling dynamics in a single
cell involves the interplay of calcium fluxes from and into
the endoplasmic reticulum and across the plasma membrane.
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TABLE 1. Stochastic processes for calcium signaling in coupled hepatocytes. [Note: k.(x,p)=k,[d,(d,
+P)Px/(d,+p)(d,+x)[d,(d 1+ P)+x(d3+P)]P +k, is the IP; receptor release function. Parameter values are
@=2.0, B=0.1, p=0.02 uM~", ;=02 uM s, 1,=4.0 uMs™', 1;=9.0 uMs™!, 1,=3.6 uMs™', &k,
=4.0 pM, k3=0.12 M, ks=0.12 uM, d;=0.3 uM, dr=0.4 uM, d3=02 uM, d,=02 uM, d,=0.4 uM,
ky=40.0 s7!, k,=0.02 s~!. ER refers to endoplasmic reticulum (see Ref. [15] for more details)].
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Since the typical size of a cell is about 10* uM? and the
numbers of reactant molecules involved in calcium signaling
are often low, internal noise is expected to be considerable.
The observation of localized stochastic Ca** puffs or sparks
and variations in the amplitudes and widths of the calcium
oscillations in experiments, also support this issue [17]. As
stated by M. Falcke, fluctuations “render intracellular Ca?t
dynamics a truly stochastic medium” [18,19]. In this respect,
the reaction steps are all stochastic, including the exchange
of calcium ions between adjacent cells through the gap junc-
tions. Denoting the population numbers of free calcium in
the cytosol of cell i by X; and that in the whole cell by Z,, the
stochastic processes involving the change of X; or Z; are
listed in Table I, where V is the volume of the cytosolic
compartment of the cell, and x;=X;/V, z;=Z;/V denote the
concentrations of the reactants. P is the concentration of
inositol trisphosphate (IP;) in the cell, which denotes
the level of the agonist simulation and is chosen to be the
control parameter. vy is the junctional coupling strength and
the diffusion process will lead to the same changes of X; and
Z;.

To study the role of internal noise, a mesoscopic stochas-
tic model should be used instead of the deterministic
ones. Basically, one should describe the reactions as a birth-
death stochastic process governed by a chemical master
equation, which describes the time evolution of the probabil-
ity of having a given number of X; and Z; [20], with i ranging
from 1 to N. There is no general procedure to solve
this master equation analytically, but it provides the starting
point for numerical simulations, including the widely-used
exact stochastic simulation algorithm (SSA) proposed by
Gillespie in 1977 [21], and some other improved methods.
Here in the present paper, we will use the CLE, which
was put forward also by Gillespie very recently [22] as
our stochastic model. Although the rigorous validity of the
CLE requires the existence of a macroinfinitesimal time
scale, which may not always be the case, our previous
studies have shown that CLE is a good choice to study
the effect of the internal noise [12,13], given that the
total number of reactant molecules is not too low. The benefit

is that the CLE is much faster for numerical simulation
than the SSA method, and it clearly shows how the internal
noises relate to the reaction dynamics and the system
size. We would like to emphasize here that the main
results of the present paper can be well reproduced, at least
qualitatively, by other approximate accelerated simulation
methods such as the Poissonian method [23] and the 7-leap
method [24].

Please note that the reaction steps and rates listed in
Table I have been handled in an effective way. The reaction
steps are not “elementary,” and quasi-steady-state approxi-
mation has been applied. For the ER release and diffusion
steps, for instance, the elementary steps would be a
random jump of calcium ions through the ER or cell
membrane with rates proportional to the number of calcium
ions in the starting side, no matter whether the concentration
gradient is positive or negative. In some coarse-grained
time scale, however, the net diffusion would be ion fluxes
from a high concentration side to a low side, and the
net diffusion rates would be proportional to the concentration
gradient as listed in Table I. In this time scale, the reactions
inside a single cell are assumed to be homogeneous,
such that the diffusion rates are also proportional to the
cell size. The cases are similar for other processes.
This “coarse-grained” procedure does not change the
deterministic dynamics shown in the CLE (1) below, but the
internal noise items will be different. However, since
the CLE is an approximation of the stochastic dynamics
in a “macroinfinitesimal time scale,” one may expect that
the “coarse-grained” procedure here is applicable, at least
in a quantitative manner. It is interesting to study the effect
of internal noise without coarse graining, while how to
take into account the fluctuations in different time and
space scales for intercellular calcium dynamics is an open
question.

Based on the processes in Table I, the CLE for the
coupled cell system, to write in a compact form, read

6
dx; 1
== =3 AXV[a + a1,

1
dt V5 (12)
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FIG. 1. Stochastic oscillations at different cell sizes for
N=1. From top to bottom, log(V) is equal to 2, 3.5, and 5,
respectively. A best regularity of the pulses can be observed
for log(V)=3.5. The dashed line in (c) shows the threshold to define
the pulses, and 7 refers to the time interval between consecutive
pulses.

6
dz; 1 —
—L= = AZP[a, + Na )], 1b
o = v A2 T Ve g(0] (1b)
where (i=1,...,N), & (1) are independent Gaussian

white noises with zero mean and unit variance, (£,(¢))=0,
(&) &(t'))= 6y (t=1"). Tt is clear that these internal noise
items are proportional to 1/\'V since all a; are proportional
to V. A simple Euler method with special treatment of the
noise terms is used for numerical calculation; the time step is
0.02 s. A zero-flux boundary condition is adopted, and all
the cell size V and control parameter P are assumed to be the
same. The average cytosolic calcium concentration
x(t):]%,Efilx,-(t) is calculated to characterize the collective
dynamics of the system.

To begin, we first study the behavior of a single
cell (N=1). With the parameter values listed in Table I, the
system undergoes a supercritical Hopf bifurcation at
P=P_.=1.45 uM. It was reported that inside the determinis-
tic oscillation region, the dependence of the stochastic oscil-
latory dynamics on the system size is trivial, i.e., the corre-
lation time of the oscillation decreases monotonically when
the system size decreases [25]. In the subthreshold region,
however, the system’s dynamics shows nontrivial depen-
dence on the cell size. In the present work, we choose
P=1.35 uM, which is slightly below the Hopf bifurcation. If
V is very large, the CLE [Eq. (1) with N=1] approximately
recovers the deterministic dynamics and no calcium oscilla-
tion exists. However, for a small value of V, the internal
noise items make sense and stochastic calcium pulses can be
observed, with variations in the amplitude and width. If the
size is too small, internal noise will dominate and the pulse
train loses regularity. Therefore, there exists an optimal cell
size for the intracellular calcium signaling, namely, cell size

PHYSICAL REVIEW E 74, 031901 (2006)

18

a1

20 24 28 32 36 40 44 48 52
Log(V) —

FIG. 2. (Color online) The dependence of the pulse regularity R
on the cell size for a different chain size. It can be seen that an
optimal cell size exists for the collective behavior of the system.

V resonance occurs. In Fig. 1, the temporal evolutions of x(r)
for three different V are shown. It is clear that the calcium
pulses are rather regular for V=10%3, which is obviously
much more regular than those for V=10 and V=10°.
The RCV value R shows a clear maximum for V~10*3 as
displayed in Fig. 2 (squares). Here a pulse is defined when
x(f) exceeds a certain threshold value x, from below (we
take it arbitrarily as x,=0.25 here, and the value of R is not
sensitive to the choice of x;). One notes that R could be of
biological significance because it is related to the time pre-
cision of the information processing. A larger R means an
increased closeness of the pulse train to a periodic one where
R is obviously infinity.

Such a resonance behavior is also found for N>1. In
Fig. 2, we have also plotted the dependence of R on V for a
different network size N. The coupling coefficient is
v=0.2 except for Fig. 4. All the curves have an apparent
maximum at an optimal cell size V. The location of the op-
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FIG. 3. (Color online) The dependence of R on the array size N
for different cell sizes. We observe a second kind of system-size
resonance, i.e., at an optimal N, the regularity of the calcium pulses
reaches the maximum.
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timal cell size V~ 10° does not change significantly with N.
Note that for N=9, the maximal R is much larger than that
for N=1, showing a kind of array-enhanced system-size
resonance.

The existence of a cell-size resonance for calcium
signaling might have interesting implications. On one
hand, the existence of stochastic oscillations indicates
that intracellular (intercellular) calcium oscillations can
be sustained in a greater parameter range than those
predicted by the deterministic model, i.e., it shows strong
robustness to external stimulations, which should be
beneficial for their proper functioning. On the other hand, it
is interesting to note that the value of the optimal cell
size V~10%? is of the same order of real living cells in vivo,
which implies that the kinetic coefficients of the mechanism
might have evolved to be optimal for the size of a cell.
Finally, such a phenomenon cannot be reproduced by a
deterministic model at all, indicating that models of
calcium signaling should take careful account of the internal
noise.

Taking another look at Fig. 2, one notes that when
N increases, the maximal R value increases at first and
then decreases, indicating an optimal value of N also. In
Fig. 3, the dependences of R on N for five different V are
depicted. As expected, each curve undergoes a clear maxi-
mum, demonstrating the occurrence of network-size N
resonance. Unlike in Fig. 2, the optimal value of N shifts
apparently for a different cell size. The time series of
x(f) (not shown here) shows apparent regularity for an
intermediate N.

One may recall the system-size-coherence resonance re-
ported in coupled excitable neurons [5]. For the N-resonance
behavior observed here, however, the system is not subjected
to any external noise, but the system’s dynamics must be
described by mesoscopic stochastic models due to the con-
siderable internal noises. Both behaviors may share the same
mechanism, i.e., the coupling between dynamical elements
changes the effective noise intensity, either internal or exter-
nal, subjected to the mean field. To some extent, however,
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FIG. 4. (Color online) Contour plot of R in
the N-V plane for y=0.05, 0.1, 0.15, and 0.2, re-
spectively. An optimal island clearly exists,
where the value of R is much larger than that of a
single cell.

the phenomenon we find here is a “real” behavior of coupled
cells.

The above results already indicate the existence of
two system-size resonances in the present system. Namely,
for coupled hypatocyte cells, the collective calcium signaling
is the most regular when both the network size N and
the cell size V have optimal values. We have drawn the
contour plot of R in the N-V plane for y=0.2 in Fig. 4
(the last panel), where an optimal “island” of N-V values
appears in the middle of the plot for N~ 10 and V~ 10%.
In real systems, the coupling strength 7 is also an important
parameter, and the collective behavior of the coupled
system may strongly depend on it. For the hepatocytes, a
reasonable range of 7y values of physical significance is be-
tween 0.07 and 0.2 [15]. The results for y=0.05,0.1,0.15 are
also shown in Fig. 4. One sees that the existence of an opti-
mal island is robust to the coupling strength, though quanti-
tatively the island moves a little bit to larger N when the
coupling becomes stronger.

At the current stage, we are not yet clear whether this
phenomenon is universal for coupled mesoscopic chemical
oscillators tuned near Hopf bifurcation, or if it is system
dependent. Actually, we have also performed similar studies
in coupled Hodkin-Huxley neuron models and similar results
have also been obtained [26], but it is hard to reach a general
conclusion from these two examples. Intuitively, we think
that this phenomenon may depend on the system’s determin-
istic bifurcation features near the Hopf bifurcation. However,
this is not an easy question to answer and deserves more
detailed work in the future.

To conclude, we have performed a model study on
the calcium-signaling behavior of a one-dimensional
network of identical hepatocyte cells coupled through gap
junctions. The cells are tuned in a regime, which is sub-
threshold for the deterministic oscillatory dynamics. In such
a regime, stochastic calcium spikes are observed, which are
induced by the internal noises. The stochastic calcium spike
train becomes the most regular when the network size N and
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the cell size V have optimal values, i.e., two types of system-
size resonances occur. Consequently, an optimal number of
cells with an optimal cell size work the best for their collec-
tive dynamics. Our findings may find interesting applications
for intercellular calcium signaling processes in vivo on one
hand, and also may induce further perspectives on the study
of internal noise as well as system-size resonance in the
future.
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